\(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [304]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 63 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {1}{2} a (2 A+2 B+C) x+\frac {a A \text {arctanh}(\sin (c+d x))}{d}+\frac {a (B+C) \sin (c+d x)}{d}+\frac {a C \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

1/2*a*(2*A+2*B+C)*x+a*A*arctanh(sin(d*x+c))/d+a*(B+C)*sin(d*x+c)/d+1/2*a*C*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3112, 3102, 2814, 3855} \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {a A \text {arctanh}(\sin (c+d x))}{d}+\frac {1}{2} a x (2 A+2 B+C)+\frac {a (B+C) \sin (c+d x)}{d}+\frac {a C \sin (c+d x) \cos (c+d x)}{2 d} \]

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a*(2*A + 2*B + C)*x)/2 + (a*A*ArcTanh[Sin[c + d*x]])/d + (a*(B + C)*Sin[c + d*x])/d + (a*C*Cos[c + d*x]*Sin[c
 + d*x])/(2*d)

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3112

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
 b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*
c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
  !LtQ[m, -1]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {a C \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} \int \left (2 a A+a (2 A+2 B+C) \cos (c+d x)+2 a (B+C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx \\ & = \frac {a (B+C) \sin (c+d x)}{d}+\frac {a C \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} \int (2 a A+a (2 A+2 B+C) \cos (c+d x)) \sec (c+d x) \, dx \\ & = \frac {1}{2} a (2 A+2 B+C) x+\frac {a (B+C) \sin (c+d x)}{d}+\frac {a C \cos (c+d x) \sin (c+d x)}{2 d}+(a A) \int \sec (c+d x) \, dx \\ & = \frac {1}{2} a (2 A+2 B+C) x+\frac {a A \text {arctanh}(\sin (c+d x))}{d}+\frac {a (B+C) \sin (c+d x)}{d}+\frac {a C \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.94 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {a (2 c C+4 A d x+4 B d x+2 C d x+4 A \text {arctanh}(\sin (c+d x))+4 (B+C) \sin (c+d x)+C \sin (2 (c+d x)))}{4 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a*(2*c*C + 4*A*d*x + 4*B*d*x + 2*C*d*x + 4*A*ArcTanh[Sin[c + d*x]] + 4*(B + C)*Sin[c + d*x] + C*Sin[2*(c + d*
x)]))/(4*d)

Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.16

method result size
parallelrisch \(-\frac {a \left (A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\sin \left (2 d x +2 c \right ) C}{4}+\left (-B -C \right ) \sin \left (d x +c \right )-x \left (B +\frac {C}{2}+A \right ) d \right )}{d}\) \(73\)
derivativedivides \(\frac {a A \left (d x +c \right )+B a \sin \left (d x +c \right )+a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B a \left (d x +c \right )+a C \sin \left (d x +c \right )}{d}\) \(82\)
default \(\frac {a A \left (d x +c \right )+B a \sin \left (d x +c \right )+a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B a \left (d x +c \right )+a C \sin \left (d x +c \right )}{d}\) \(82\)
parts \(\frac {a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {\left (a A +B a \right ) \left (d x +c \right )}{d}+\frac {\left (B a +a C \right ) \sin \left (d x +c \right )}{d}+\frac {a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(83\)
risch \(a x A +a B x +\frac {a C x}{2}-\frac {i B a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {i a C \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} B a}{2 d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} a C}{2 d}+\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {\sin \left (2 d x +2 c \right ) a C}{4 d}\) \(138\)
norman \(\frac {\left (B a +\frac {1}{2} a C +a A \right ) x +\left (B a +\frac {1}{2} a C +a A \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a A +3 B a +\frac {3}{2} a C \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a A +3 B a +\frac {3}{2} a C \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {a \left (2 B +C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a \left (2 B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {4 a \left (B +C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {a A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(207\)

[In]

int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x,method=_RETURNVERBOSE)

[Out]

-a*(A*ln(tan(1/2*d*x+1/2*c)-1)-A*ln(tan(1/2*d*x+1/2*c)+1)-1/4*sin(2*d*x+2*c)*C+(-B-C)*sin(d*x+c)-x*(B+1/2*C+A)
*d)/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.08 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {{\left (2 \, A + 2 \, B + C\right )} a d x + A a \log \left (\sin \left (d x + c\right ) + 1\right ) - A a \log \left (-\sin \left (d x + c\right ) + 1\right ) + {\left (C a \cos \left (d x + c\right ) + 2 \, {\left (B + C\right )} a\right )} \sin \left (d x + c\right )}{2 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/2*((2*A + 2*B + C)*a*d*x + A*a*log(sin(d*x + c) + 1) - A*a*log(-sin(d*x + c) + 1) + (C*a*cos(d*x + c) + 2*(B
 + C)*a)*sin(d*x + c))/d

Sympy [F]

\[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=a \left (\int A \sec {\left (c + d x \right )}\, dx + \int A \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int C \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int C \cos ^{3}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

a*(Integral(A*sec(c + d*x), x) + Integral(A*cos(c + d*x)*sec(c + d*x), x) + Integral(B*cos(c + d*x)*sec(c + d*
x), x) + Integral(B*cos(c + d*x)**2*sec(c + d*x), x) + Integral(C*cos(c + d*x)**2*sec(c + d*x), x) + Integral(
C*cos(c + d*x)**3*sec(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.30 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} A a + 4 \, {\left (d x + c\right )} B a + {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a + 4 \, A a \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 4 \, B a \sin \left (d x + c\right ) + 4 \, C a \sin \left (d x + c\right )}{4 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*A*a + 4*(d*x + c)*B*a + (2*d*x + 2*c + sin(2*d*x + 2*c))*C*a + 4*A*a*log(sec(d*x + c) + tan(d
*x + c)) + 4*B*a*sin(d*x + c) + 4*C*a*sin(d*x + c))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (59) = 118\).

Time = 0.35 (sec) , antiderivative size = 131, normalized size of antiderivative = 2.08 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {2 \, A a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 2 \, A a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + {\left (2 \, A a + 2 \, B a + C a\right )} {\left (d x + c\right )} + \frac {2 \, {\left (2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

1/2*(2*A*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 2*A*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (2*A*a + 2*B*a + C*
a)*(d*x + c) + 2*(2*B*a*tan(1/2*d*x + 1/2*c)^3 + C*a*tan(1/2*d*x + 1/2*c)^3 + 2*B*a*tan(1/2*d*x + 1/2*c) + 3*C
*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^2)/d

Mupad [B] (verification not implemented)

Time = 1.62 (sec) , antiderivative size = 159, normalized size of antiderivative = 2.52 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {B\,a\,\sin \left (c+d\,x\right )}{d}+\frac {C\,a\,\sin \left (c+d\,x\right )}{d}+\frac {2\,A\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,B\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {C\,a\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}-\frac {A\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{d} \]

[In]

int(((a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x),x)

[Out]

(B*a*sin(c + d*x))/d + (C*a*sin(c + d*x))/d + (2*A*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d - (A*a*ata
n((sin(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*2i)/d + (2*B*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d +
(C*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (C*a*sin(2*c + 2*d*x))/(4*d)